CARDAN SERVICE

PARTIE 1 : tableau des correspondances de série

PARTIE 2 : couple de serrage des vis pour les blocs à plaquettes

PARTIE 3: graissage et entretien

PARTIE 4: instruction de montage des blocs SPL

PARTIE 5: outillage pour montage des blocs SPL

PARTIE 6: calcul des transmissions

- 1. DETERMINATION DE LA SERIE DE LA TRANSMISSION
- 2. REGIME MAXIMUM
- 3. ANGLE MAXIMUM (Figure 5)
- 4. VERIFICATION DU COUPLE MAXI
- 5. CONSEIL DE MONTAGE

PARTIE 1 : tableau des correspondances de série

Série GKN Compact 2000	Série GWB	Ancienne série GWB	Ancienne GLAENZER	NK VOLVO	Série 10 DANA	Série SPL DANA SPICER	COUPLE MAX INST.
					SPICER		(Nm)
Compact 2010	687.10	287.10	1100		1210		1200
Compact 2015	687.15	287.10	1300		1310		2200
Compact 2020	687.20		1400		1410		3700
Compact 2025	687.25	287.20/587.10			1480	SPL55	5500
Compact 2030	687.30	387.20/587.15	506		1550HD	SPL70	7000
Compact 2035	687.35	587.20	606	NK300	1610	SPL90/100	10000
Compact 2040	687.40	587.30	706		1710	SPL140	14000
Compact 2045	687.45	587.35	806		1810	SPL170 TUBE	17000
						126 x 3	
Compact 2050	687.50	587.36	806R	NK400	1810HD	SPL170 HD	21000
						TUBE	
						128,5 x 4,25	
Compact 2055	687.55	587.42		NK500		SPL250 TUBE	25000
						130 x 5	
Compact 2060	687.60		906		1880	SPL250HD	30000
						TUBE 132 x 6	
Compact 2065	687.65	587.48		NK600			35000

PARTIE 2 : couple de serrage des vis pour les blocs à plaquettes

Série	Couple de serrage sans plaquettes (Nm)	Couple de serrage avec plaquettes (Nm)
1610	23 – 33	35 – 47
1710 / 1760 / 1810	51 - 65	43 – 57
SPL	34 - 44	

PARTIE 3: graissage et entretien

Nous conseillons les graisses qui sont en accord avec les spécifications NLGI Grades 1 et 2.

Exemples:

- SHELL Alvania EP2
- MOBIL graisse spéciale n°53-030
- ESSO Beacon EP2
- ELF XT 5740

Qualité du graissage :

La plupart des transmissions sont fournies avec points de graissage sur les croisillons et coulisses. Les transmissions sont fournies avec graisse. Pour un graissage valable des croisillons, la graisse doit s'échapper par les 4 joints de coussinet. De même, pour la mâchoire à coulisse, la graisse doit s'échapper par l'évent d'extrémité de coulisse.

FDITION N°: 5/2007

67

Périodicité:

	Kms	Heures
Véhicules routiers	50 000	
Véhicules d'approche de chantier	5 000	
Véhicules tout-terrain		100
Application industrielle milieu non pollué et		1 000
température ambiante		
Application industrielle milieu pollué et température		100
supérieure à 40°c		

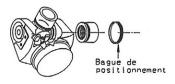
PARTIE 4: instruction de montage des blocs SPL

FICHE DE MONTAGE

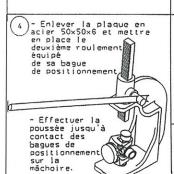
Produit: Bloc rechange SPL 170 ou 250

Kit bloc rechange composé de :

! Croisillon (1 corps + 4 roulements) 8 VIs 4 Plaquettes 2 Bagues de positionnement (INSTALLATION HEIGHT TOOL)


3

- Démonter le croisillon usagé après avoir enlevé les vis et plaquettes.

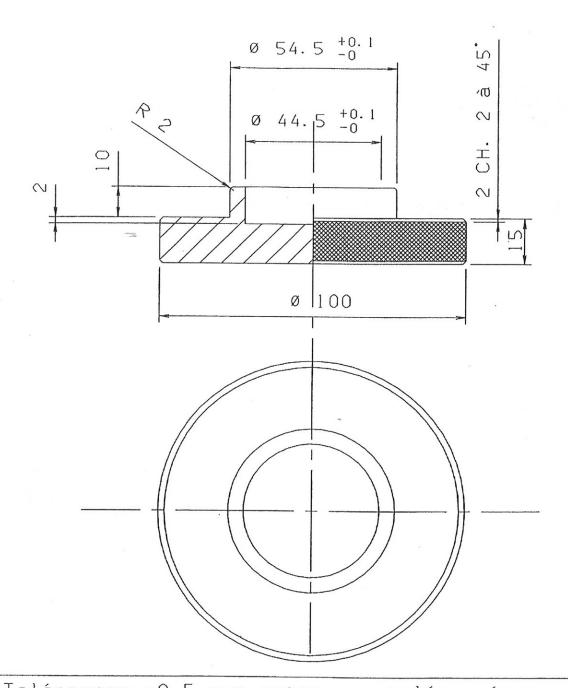

- Nettoyer les alésages et ébavurer les surfaces agressives.

- Mettre en place le corps du croisillon dans les alésages de la Mâchoire fixe ou de la mâchoire à coulisse en respectant la position du graisseur.

Positionner le ler roulement manuellement et installer sur ce roulement la bague de positionnement.

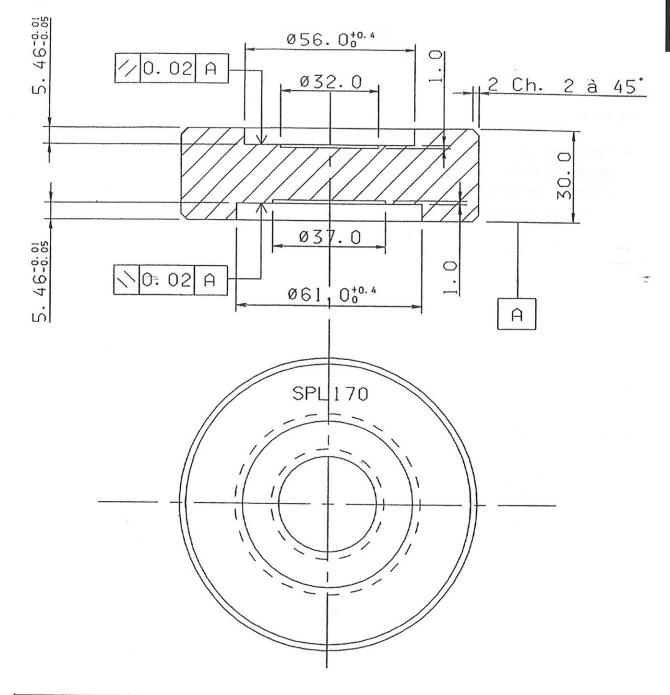
- Pousser le ler roulement jusqu'à ce que la bague de positionnement vienne en contact avec la mâchoire.

(5) - Effectuer les même opérations depuis la phase 2 pour le montage des mâchoires à bride. 6) - Enleverles 2 bagues de positionnement et mettre en place les vis et plaquettes . Couple de serrage des vis = 35-40 Nm.


- Après montage de la transmission sur le véhicule. compléter le graissage des croisillons jusqu'à la purge des 4 roulements. N'utiliser qu'une graisse de qualité NLGI. EP2.

NOTA: les bagues de positionnement sont livrées avec le croisillon.

PARTIE 5 : outillage pour montage des blocs SPL


CARDAN SERVICE

EDITION N°: 5/2007

Format:A4

lolerances	±U.5 sur cotes non tolérand	cées
Matiere con	seillée: 40CMD8+S	
Ech: 1	OUTILLÁGE N° 1 POUR	
SPL170/SPL250		Par: JMG
	SILI/U/SFLZ5U	

27-06-97

Graver SP	L250"(alesage Ø61) sur face	A			
Graver "SPI	_170"(alesage Ø56) sur face	opposee			
Tolerances	Tolerances ±0.5 sur cotes non tolerancees				
Matiere conseilée : 40CMD8+S					
Ech: 1 OUTILLAGE N° 2 POUR					
SPL170/SPL250	EMMANCHEMENT	Par: JMG			
Format:A4 ROULEMENTS SPL170		27-06-97			

EDITION N°: 5/2007

PARTIE 6: calcul des transmissions

1) <u>DETERMINATION DE LA SERIE DE LA TRANSMISSION</u>

Les arbres de transmission sont déterminés à partir des valeurs du couple moteur et de la démultiplication entre le groupe moto-propulseur et l'arbre.

Le choix de la série repose sur les paramètres suivants :

- couple continu appliqué sur la transmission ;
- angle réel de travail;
- durée de vie souhaitée ;
- source de puissance.

Pour sélectionner la taille de la transmission nécessaire à une application donnée, il est nécessaire d'utiliser la formule de couple équivalent :

Couple équivalent (CE) = $T \times FA \times FV \times Fp$.

T: couple continu;

FA: facteur d'angle relevé à partir de la figure 2 page 9;

FV: facteur de durée de vie, relevé à partir de la figure 3 page 10;

Fp: facteur de puissance (ci-dessous).

Source de puissance	Fp
Moteur électrique	1,00
Moteur à essence	1,25
Moteur diesel	1,50

La formule CE = T x FA x FV x Fp constitue une méthode facile de sélection des transmissions. La figure 1 déterminera directement la série à utiliser pour un couple CE et une vitesse donnée.

Le couple équivalent (CE) prend en considération le couple (C) appliqué à la transmission, les angles (FA) et leur effet sur la durée de vie, le niveau de surdimensionnement nécessaire (FV) pour assurer la durée de vie et un facteur (Fp) prenant en compte l'excitation torsionnelle due à la source de puissance.

Calcul des couples en fonction des puissances moteur :

Puissance en KW ----- couple = (KW x 955) / (tr/mn) (en mdaN)

Puissance en CV ---- couple = (CV x 716) / (tr/mn) (en mdaN)

Application du dimensionnement :

Moteur électrique de 21,8 KW – fonctionnement à 1000 tr/mn – angle de 6° à chaque joint – durée de vie attendue de 50 000 heures.

Utiliser la formule $CE = T \times FA \times FV \times Fp$

PARAMETRES	SOLUTIONS
$C = 21.8 \times 955 / 1000 = 20.8 \text{ mdaN}$	CE = 20,8 x 1,25 x 2 x 1
FA = 1,25 (fig. 2)	
FV = 2 (fig. 3)	CE = 52 mdaN à 1000 tr/mn
Fp = 1	Utiliser fig. 1 page 8 pour
	déterminer le couple équivalent
	avec les paramètres 52 mdaN
	et 1000 tr/mn.
	LA SERIE 1410 SERA
	RETENUE ou l'équivalent sur
	le tableau partie 1 page 2.
P	

2) **REGIME MAXIMUM**

Pour les applications où une longueur de transmission est nécessaire, il est indispensable de vérifier que VU, la vitesse d'utilisation de la transmission, est inférieure à VC, vitesse critique théorique de la transmission.

Pour les véhicules automobiles, on considère qu'une survitesse de 20 % est possible. Dans ce cas on doit avoir 1.25 VU < VC.

Les valeurs du tableau ci-dessous permettent de déterminer VC, vitesse critique de la transmission. VC dépend des dimensions du tube et de la longueur L, entraxe des joints :

VC = K / L² en tr/mn (Attention L est en mètre)

Série	Ø tube x épaisseur	K
1310	50,8 x 2,4	6200
1310	63,5 x 2,1	7900
1410	76,2 x 2,1	9600
1480	88,9 x 2,1	11200
1550	88,9 x 2,4	11000
1610	88,9 x 3,4	11000
1710	101,6 x 3,4	12700
1760	103,9 x 4,6	12800
1810	115,9 x 4,2	14400
SPL90	101 ,6 x 3,4	12700
SPL90HD	103,9 x 4,6	12800
SPL140	114,3 x 3,4	14300
SPL140HD	115,9 x 4,2	14400
SPL170	126 x 3	15900
SPL170HD	128,5 x 4,25	16000
SPL250	130 x 5	16180
SPL250HD	132 x 6	16300

Détail du tableau

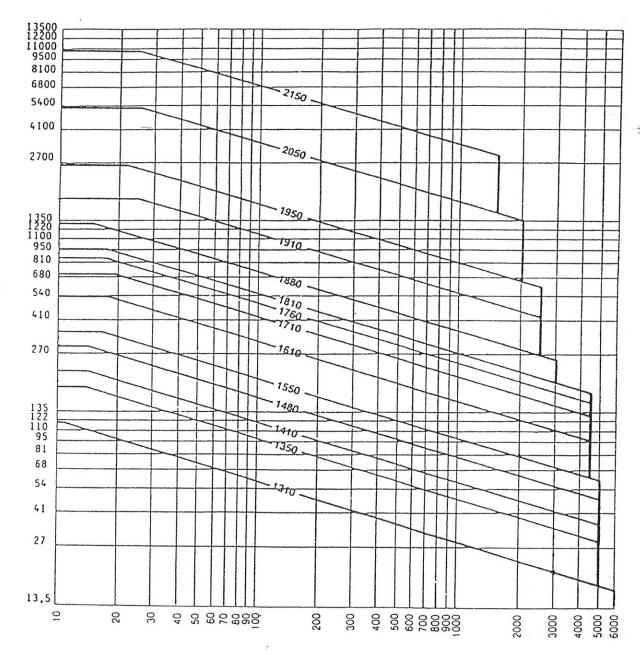
 $K = 0.75 \times 1.22 \times 10^2 \times \sqrt{(D^2 + d^2)}$

 $[D:\varnothing \ ext. \ Tube \ (en \ mm) - d:\varnothing \ int. \ Tube \ (en \ mm)]$

 $\underline{\text{Conclusion}}$: dans le cas où VC < 1,2 VU, l'utilisation d'une ou plusieurs transmissions à palier s'imposera. Cette formule n'est valable que pour les transmissions en acier.

Détail du tableau

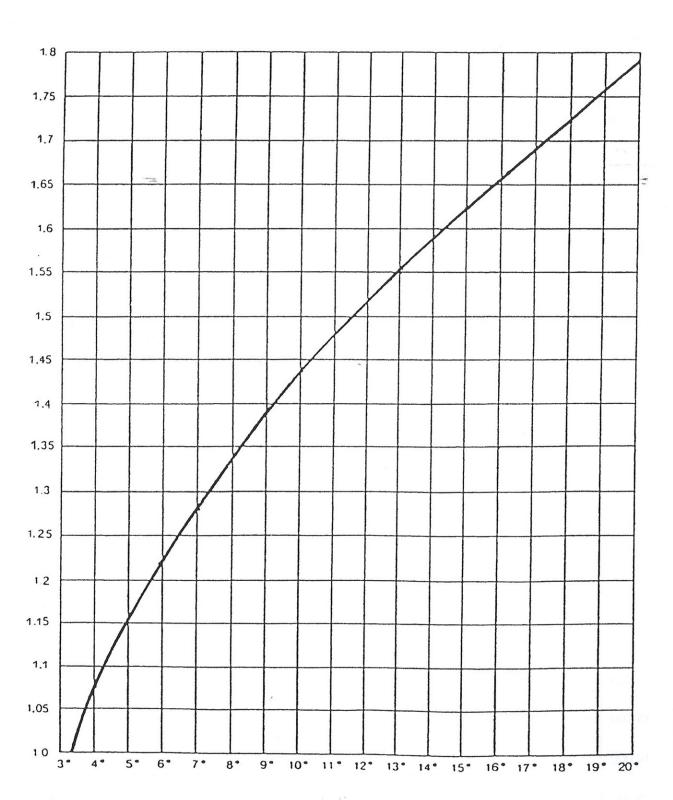
 $K = 0.75 \times 1.22 \times 10^2 \times \sqrt{(D^2 + d^2)}$


 $[D: \varnothing \text{ ext. Tube (en mm)} - d: \varnothing \text{ int. Tube (en mm)}]$

<u>Conclusion</u>: dans le cas où VC < 1,2 VU, l'utilisation d'une ou plusieurs transmissions à palier s'imposera. Cette formule n'est valable que pour les transmissions en acier.

Sélection du joint de cardan

Couple équivalent (mdaN)



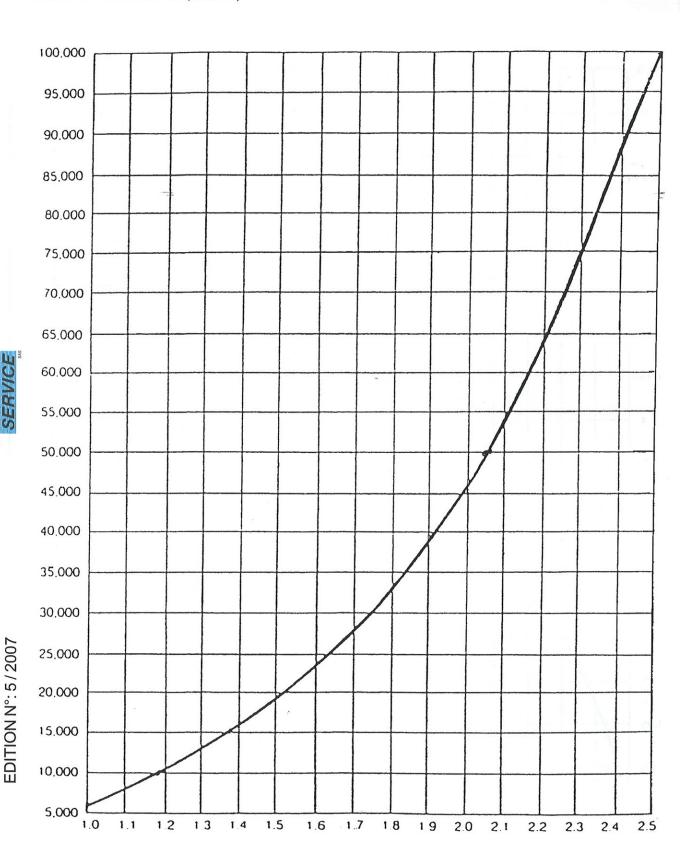
EDITION N°: 5/2007

Vitesse tr/mn

GARDAN

Facteur d'angle (FA)

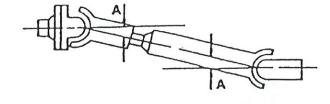
Angle de fonctionnement du joint (en degré)


EDITION N°: 5/2007

FACTEUR DE DUREE DE VIE

Facteur de durée de vie

Durée de vie attendue (heures)

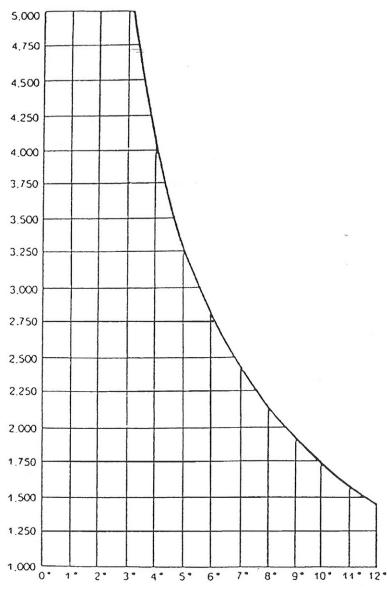


Facteur de durée de vie (FV)

ANGLE MAXIMUM

Figure 5 : angle maximum suggéré pour une transmission à deux joints de cardan

Régime de la transmission (tr/mm max.)



Régime maxi.	Angle
5000 tr/mm	3°15'
4500 tr/mm	3°40'
4000 tr/mm	4°15'
3500 tr/mm	5°0'
3000 tr/mm	5°5'
2500 tr/mm	7°0'
2000 tr/mm	8°4'
1500 tr/mm	11°3'

Note: des comportements très variables peuvent exister sur des applications différentes du fait des composants utilisés et du montage. Cependant, les combinaisons régime / couple ci-dessous sont satisfaisantes pour la majorité des applications.

Prendre contact avec nos services techniques quand les angles de fonctionnement dépassent 12°

Tr / minn

Angle « A » du joint de cardan (en degré)

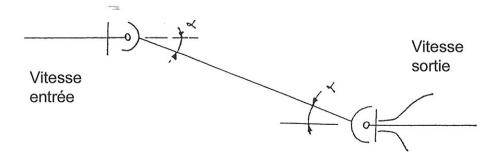
3) COUPLES MAXIMUM ADMISSIBLES ET PRODUIT EQUIVALENT

Les transmissions DANA SPICER sont officiellement vendues pour un couple maxi admissible donné intégrant toutefois un coefficient de sécurité.

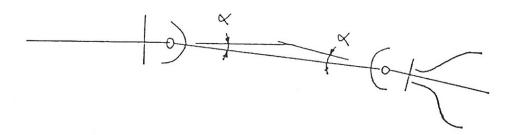
Série	Couple maxi en Nm	Série équivalente GLAENZER
1210	1200	1120
1310	2200	1305 / 1315
1350	3000	
1410	3700	1410
1480	4500	1480
1550	6000	GC 506
SPL 90	9000	GC 606
1610	8800	GC 606
1710	11000	GC 706
1710	13000 avec tube 103.9 x 4.6	GC 706 R
1760	16000	GC 806
1810	19000	GC 806 / GC 906 / 2045
SPL 170	21000	GC 806 / GC 806R / 2045 / 2050
SPL 250	25000	GC 906 / 2055

Vérifier que le couple maximum à transmettre est impérativement inférieur au couple maximum de la série déterminée. En cas de doute, il sera préférable de contacter le service application de CARDAN SERVICE pour déterminer la série appropriée à une application donnée. Pour les couples maxi admissibles de notre nouvelle gamme SPL voir valeurs tableau partie 1 page 2.

EDITION N°: 5/2007


CONSEIL DE MONTAGE

ANGLE DE FONCTIONNEMENT D'UNE TRANSMISSION


Un joint de cardan, fonctionnant sous un angle d'entrée différent de l'angle de sortie (± 1°), n'est pas un montage homocinétique, ce qui entraîne une vitesse de sortie variable périodiquement. Pour éviter cela et afin d'obtenir une vitesse de sortie constante, il faut un montage Homocinétique, c'est-à-dire, un angle d'entrée = à l'angle de sortie. Du fait de cette caractéristique, l'alignement et l'installation de la transmission doivent être considérés avec la plus grande attention (voir page 11 pour la limite des angles en fonction de la vitesse).

Condition d'homocinétie d'une transmission à cardan (vitesse sortie arbre = vitesse d'entrée):

a) Les arbres d'entrée et de sortie doivent être concourants ou parallèles.

Montage en Z = arbre parallèle.

Montage en W = arbre concourant.

- b) Les angles de chaque joint doivent être égaux.
- c) Les oreilles de la transmission doivent être alignées.

Si ces conditions d'application né peuvent pas être respectées, contacter le service application de CARDAN SERVICE, pour valider ou pour conseiller un montage différent.

• OPTIMISATION DES ANGLES SUR LIGNE D'ARBRES

(jusqu'à 3 joints avec angle sur un seul plan)

Avec angle sur un plan.

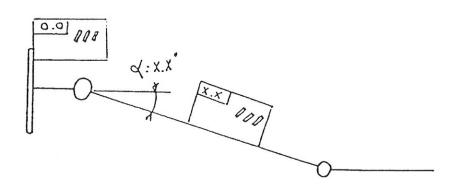
Pour des raisons d'empattement ou de montages spéciaux (véhicule incendie par exemple), il est parfois nécessaire de réaliser des lignes d'arbres plus ou moins complexes. Il est possible de déterminer la résultante des angularités des joints à une seule angularité par relation :

$$\alpha_{R} = \sqrt{(\alpha 1^2 \pm \alpha 2^2 \pm \alpha 3^2)}$$

Phasage à 0° = oreille du joint dans le même plan.

Phasage à 90° = oreille du joint 1 décalé de 90° par rapport au joint 2

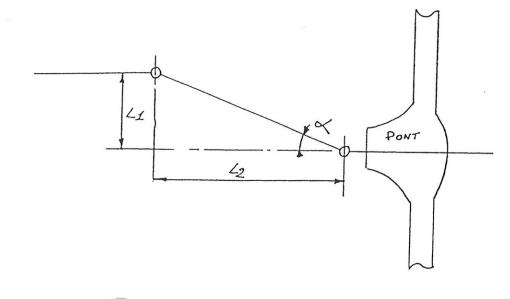
+ α si phasage à 90° entre le joint 1 et le joint 2 ;


- α si phasage à 0° entre le joint 1 et le joint 2.

+ α si phasage à 0° entre le joint 2 et le joint 3 ;

- α si phasage à 90° entre le joint 2 et le joint 3.

Si la résultante α_R est nulle, la ligne d'arbres se trouve être totalement homocinétique. On cherchera donc à faire tendre au maximum cette résultante vers zéro pour améliorer l'homocinétie du système. Si le résultat obtenu à partir de la formule $Tr/min\ x$ αR est supérieur à 24500 le montage est considérer comme hors norme, veuillez nous consulter.



Le zéro s'obtient en effectuant 2 impulsions sur le bouton de gauche.

Angle dans le plan :

L'angle master est un niveau électronique, et comme tout niveau, il n'indique pas les angles dans le plan horizontal. On déterminera les angles de façon trigonométrique (si angle sur 2 plans ou plus de 3 joint consulter nos services techniques).

Angle $\alpha = 1 / [tg \times (L2 / L1)]$ ou arc tangente (L1/L2)

Angle α = 1 / [tg x (L2 / L1)] ou arc tangente (L1/L2)